MXG : A Model Expansion Grounder and Solver

Raheleh Mohebali, Faraz Hach and David G. Mitchell

Computational Logic Laboratory
Simon Fraser University, Burnaby, BC, CANADA
{rmohebal, fhach, mitchell}@cs.sfu.ca

Abstract. We describe MXG, a solver for NP search problems expressed as
model expansion (MX). Problems are specified in an extension of first-order
logic, and solved by grounding. That is, MXG combines a high-level specification
with an instance and produces a propositional formula encoding the solutions. It
calls a SAT (or extended SAT) solver to find solutions. MXG is distinguished
from other grounding software in its use of a grounding algorithm based on a
generalization of the relational algebra.

Keywords: Model Expansion, Grounding.

1 Introduction

The task of model expansion (MX) was proposed as an appropriate formal basis for
tools for solving search problems in [&], and further developed in [9]. In the MX frame-
work, an instance is a finite o-structure .4, and a specification is provided as a formula,
¢, in a suitable logic, over a vocabulary c Ue 2 o. A solution is an expansion of A to
o Ue that satisfies ¢. We call o the instance vocabulary, and € the expansion or solution
vocabulary.

MXG is a model expansion (MX) solver oriented to solving NP search problemsﬂ
A specification for MXG is a formula in multi-sorted first-order logic (FO), with order,
extended by inductive definitions, cardinality constraints. See [9]] for details of the lan-
guage, excluding the extension with cardinality. As FO model expansion is the same as
the task of witnessing the second order (SO) quantifiers in 3SO model checking, the
language can express exactly the problems in NP.

MXG operates by grounding. Given a specification and an instance, it generates a
propositional CNF formula (possibly extended with cardinality constraints) encoding
the solutions for the instance, if any. It then calls a SAT solver (possibly extended to
handle cardinality constraints), to find a satisfying assignment, from which it constructs
a solution. MXG produces CNF formulas in DIMACS format, so that any standard
off-the-shelf SAT solver can be used, albeit after a small amount of programming to
translate the output of the SAT solver for interpretation by MXG.

The grounding algorithm of MXG is based on a generalization of the relational alge-
bra [[L0], whereas all other grounding systems of which we are aware with the exception
of Alloy [3]], operate by direct substitution. This includes the ASP grounders LPARSE
[[L1]] and Gringo [2] and the dlv grounder[S]], and those of finite model generators in-
cluding ModGen[4] and Mace [l1]].

! MXG is available on Model Expansion Project website for both linux and windows systems.

http://www.cs.sfu.ca/research/groups/mxp

Modern SAT solvers are very effective at solving many search problems, but em-
ploying them generally requires designing and implementing a reduction to SAT. MXG
may be viewed as a high-level front-end for SAT solvers, allowing them to be much
more easily exploited. It implements a uniform, polytime, reduction to SAT for every
problem in NP. We have also found MXG to be useful as a generator of benchmark and
test instances in tuning and debugging our SAT solver.

For further details on formal aspects of MX and the MXG language, as well as
performance on benchmark problems, see [[9]. See also [[7]], for an extended cases study
of a problem demonstrating the tailoring of MXG specifications to produce dramatic
performance improvements on a challenging benchmark set.

2 Grounding

Let ¢ be a formula over vocabulary oUe. A reduced grounding of ¢ with respect to finite
o-structure A is a formula ¢ over ¢ only, such, for any structure 5 = (A; O“A; B), BE ¢
iff B E 1. A reduced grounding exactly defines the set of solutions for the instance A.
One may be obtained by producing a grounding and then “evaluating out” the instance
vocabulary. MXG performs the grounding and evaluating out simultaneously.

The algorithm MXG uses is based on “extended relations” and a generalization
of the relational algebra. An extended relation 7% is a table with attributes z, and a
reduced ground formula associated to each entry. Tuples may be represented by pairs
(@,vr(a)), where ¥ (a) is the ground formula associated with the tuple a. If @ does
not appear in the table, this is equivalent to (@, false) appearing in the table.

The grounding algorithm is recursively operating on the structure of the formula
being grounded, and producing an “answer” for each sub-formula. The extended rela-
tion 7% is the answer to formula ¢(Z) wrt structure A, iff foralla : T — A, ¥ (a)
be the reduced ground formula for ¢(@). The answer for an atomic formula is obtained
from the given relation when the predicate involved is an instance symbol, and from the
universal relation when it is an expansion symbol. The answer for a sentence is an ex-
tended relation containing only the empty tuple; the formula associated with that tuple
is the reduced grounding of the sentence.

We illustrate the generalization of the relational algebra to extended relations by
giving the definition of the extended join operator. The others (union, complement,
projection, division) are defined similarly. If there is no entry for a particular tuple with
values @, it is considered to be an entry with the formula part false.

Def: T;; = Ry < Sz, where T = 7 U Z, iff for any (@, yr(a)) € T5: (@/7,Yr(G/7)) €
Ry, (@)%, $5(a/%)) € 8= vr(@) = br(@/m) A bs(a/?).

T is the answer to ¢r(7) A ¢5(Z) wrt A, where Ry, Sz are answers to ¢r(7), ¢s(Z)
consequently with respect to structure A.

2.1 The Basic Algorithm
The basic recursive grounding algorithm Gnd(¢, A) is defined by:

1. ¢ = P(T), P instance: returns T with tuples { (@, true) : @ € P},

¢ = P(T), P expansion: returns 75 with tuples {(a, P(a)) : a: T — A},
¢ =0 A Gnd(8, A) < Gnd(y, A),

¢ =0V Gnd(d, A)U Gnd(v), A),

¢ =~ Gnd(1), A),

¢ = FYY(T): 77/5Gnd(Y(T), A),

¢ = Vyy(z): Gnd(4(7), A)/{y}-

Nk we

The complexity of Gnd is O(n'), where n is the size of the input structure and [is the
length of the formula. MXG calls Gnd for each problem axiom, producing for each
a ground formula. The union of these formulas is a reduced grounding of the prob-
lem axiomatization wrt A. MXG converts this to a propositional CNF formula (which,
in general, requires adding extra ‘Tseitin’ variables). The satisfying assignments for
this formula are — after projecting out the Tseitin variables — in one-to-one correspon-
dence with solutions of the problem. MXG records the mapping of ground atoms to
propositional atoms (which in DIMACS format are integers), and uses the inverse of
this mapping to produce a solution from a satisfying assignment to the propositional
formula.

2.2 Grounding with hidden variables

Gnd requires a universal extended relation to be built for each expansion predicate.
These relations are very big if the predicate is defined over large domains, and will take
a significant computation time during the execution of Gnd. MXG uses a refinement of
Gnd, Gnd-hidden, based on extended-hidden relations in which columns that amount
to the inclusion of a universal relation are left implicit. An extended-hidden relation
TY is an extended relation with explicit attributes Z and hidden attributes j. Value of
hidden attributes are not assigned explicitly in tuples. ¢ (@) for each tuple (a, ¢ (@)),
@ : T — A, is a FO formula with free variables 7. Extended-hidden table T% is a
compact representation of extended table 7% with tuples ((@, b), 17 (@)(y/b)) for all
b:y— A

The algorithm computes extended-hidden relations 7}f with one tuple (0, P(Z))
for each expansion P(T). Gnd — Hidden procedure is the same as Gnd except that
it applies the relational algebra operations adapted to extended-hidden relations. The
adapted definition of join is:
Def: T/ = RY" >a S7°, where 7y = 7 UT5, Uy = (Ur U Us)/ Ty, iff for any tuple
(@ r(@) € Tg - @/Zr,¢r(@/Tr)) € R, (@/Ts,¢s(5/75)) € Sz ¢r(@) =
Yr(@/Tr) Aps(a/Ts).

2.3 Grounding refinements

MXG implements a number of refinements to improve performance, such as use of
hash tables in join computation, minor formula re-writing to reduce number of Tseitin
variables, and pushing outer negations inside.

3 Inductive Definitions (IDs)

The MX language is FO(ID), the extension of FO with inductive definitions under a
two-valued well-founded semantics. Reductions of inductive definitions to SAT are not
trivial, and the question of how to obtain good performance in a ground solver with
inductive definitions is not resolved (but see [0]]). In the current version of MXG, we
correctly implement two fragments of the inductive definitions of FO(ID), so we can
use a standard SAT solver.

— A defined predicate is computed at grounding time, if it is positive and all predicate
symbols in its body are instance predicates or are effectively instance predicates (as
they have already been computed during grounding). This is done by rewriting the
rules as FO implication, grounding to propositional Horn clauses, and computing
the minimum model in polynomial time. This model is the well-founded model of
ID. The defined predicate is then treated as an instance predicate for the remainder
of the grounding of this specification. Example : To find the distance of vertices
in a graph G = (V; Edge) from a particular vertex Start € V we can use the
following ID:

{Dist(a,b) — a = Start N\b = MIN
Dist(a,b) < Dist(a’,b’) A Edge(a’,a) A SUCC(V',b)}
Dist(a,b) is true iff the distance of a, Start be b. MXG rewrites the rules as the
following FOL formulas and calls Gnd — Hidden procedure for each of them.
Then the Compute MinM odel is called which finds the interpretation of Dist.

Vab: ((a = Start N\b= MIN) D Dist(a,b))
Vab: ((3a'V’ : (Dist(a’,b’) A Edge(a’,a) A SUCC(V',b))) D Dist(a,b))

— MXG replaces other definitions with their Completion. The substitution is correct if
the induction defined is over a well-founded order, but not in general. Example : To
find a Hamiltonian Cycle in a graph G = (V'; Edge) one might use the following
ID, where HamC'ycle and Reached are expansion predicates indicating subse-
quently which edges belong to the Hamiltonian cycle, and vertices are reachable
through HamC'ycle edges from a fixed vertex M IN:

{Reached(v) «— v = MIN
Reached(v) <+ Reached(v') A HamClycle(v',v)}
As this ID is not of the first form, MXG computes the completion of ID and adds it
to the problem axioms:

Vv : (Reached(v) < (v = MIN V [Fv' : (Reached(v') A HamCycle(v',v))]))
The completion in this case, may have models that are not models of the definition.

4 Cardinality Constraints

Cardinality constraints are very useful in practice, but not conveniently represented in
FO model expansion. MXG together with a SAT+Cardinality solver provides some sim-
ple cardinality options. A cardinality formula VZ : ®(n;y; ¢(Z, 7)) in MXG where ©
is one of the UB, LB, C ARD states that for any choice of T : |7 : ¢(Z, 7)| is less than,

greater than, or equal to n respectively for U B, LB, CARD. There is no standard for-
mat for propositional cardinality clauses. MXG uses the MXC B, the SAT+Cardinality
solver for solving the cardinality constraints. # (b ub Iy ... [, is a cardinality clause
in MXC. It bounds the number of true literals from the set {1, ..., } to be at least Ib
and at most ub.

To ground the formula VZ : U B(n; J; ¢(T, 7)), a propositional cardinality clause:

#0n [¢(67 bl)] o [(z)(av bk)]
is generated for each @ : T — A, where [¢(a, b;)] is the propositional variable assigned
to ¢(a,b; : § — A). The lower bound, upper bound values in the cardinality clause
are set accordingly for LB, CARD. Then Gnd — Hidden is called for each each FOL
sentence ¢(a, b;) with the additional constraint that a propositional variable [¢(@, b;)]

is assigned to the whole sentence.

5 Future work

MXG is in its early stages of development, but already performs quite well. Future work
includes:

— Handling general inductive definitions,
— Improved methods for implementing the relational algebra operations,
— Adding arithmetic, and more general use of cardinality and other aggregates.

References

1. K. Claessen and N. orensson. New techniques that improve mace-style finite model finding.
CADE-19, Workshop W4. Model Computation Principles, Algorithms, Applications, 2003.

2. Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo : A new grounder for answer set
programming. In LPNMR, pages 266-271, 2007.

3. Daniel Jackson. Automating first-order relational logic. In Proc. ACM SIGSOFT Conf.
Foundations of Software Engineering, pages 130-139, 2000.

4. Sun Kim and Hantao Zhang. Modgen: Theorem proving by model generation. In National
Conference on Artificial Intelligence, pages 162-167, 1994.

5. Nicola Leone, Simona Perri, and Francesco Scarcello. Backjumping techniques for rules
instantiation in the dlv system. In NMR, pages 258-266, 2004.

6. Maarten Marién, Rudradeb Mitra, Marc Denecker, and Maurice Bruynooghe. Satisfiability
checking for pc(id). In LPAR, pages 565-579, 2005.

7. David Mitchell, Faraz Hach, and Raheleh Mohebali. Faster phylogenetic inference with mxg.
In Proc. of LPAR, 2007.

8. David Mitchell and Eugenia Ternovska. A framework for representing and solving NP search
problems. In Proc. of the 20th National Conf. on Artif. Intell. (AAAI), pages 430435, 2005.

9. David Mitchell, Eugenia Ternovska, Faraz Hach, and Raheleh Mohebali. Model expansion
as a framework for modelling and solving search problems. Technical Report TR 2006-24,
School of Computing Science, Simon Fraser University, December 2006.

10. Murray Patterson, Yongmei Liu, Eugenia Ternovska, and Arvind Gupta. Grounding for
model expansion in k-guarded formulas. In Search and Logic: Answer Set Programming
and SAT, 2006.

11. Tommi Syrjnen. Lparse 1.0 user’s manual, 1998. http://www.tcs.hut.fi/Software/smodels/.

2 MXC is available on Model Expansion project website.

http://www.cs.sfu.ca/research/groups/mxp

	MXG : A Model Expansion Grounder and Solver
	Raheleh Mohebali, Faraz Hach and David G. Mitchell

